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Introduction:  Important concepts

RadioRadio  interferometers are linear devicesinterferometers are linear devices

Imaging: Estimation of true sky brightness from the observed visibilitiesImaging: Estimation of true sky brightness from the observed visibilities

Imaging is a non-linear processImaging is a non-linear process

①①  Imaging:  Fourier inversion of the visibilitiesImaging:  Fourier inversion of the visibilities

Weighting modifies the point-spread functionWeighting modifies the point-spread function     
and the noise characteristics (SNR)and the noise characteristics (SNR)

②②  DeconvolutionDeconvolution:  Correcting for :  Correcting for ““missedmissed”” visibilities visibilities

A number of methods lead to somewhat different resultsA number of methods lead to somewhat different results

③③  Self-calibration:  Correcting the visibilities to sharpen the imageSelf-calibration:  Correcting the visibilities to sharpen the image

Improve on calibrationImprove on calibration  (SNR permitting)(SNR permitting)



Imaging

• Go from samples of the visibility function to the “dirty” image



Deconvolution

• Go from dirty image to deconvolved image



•• First First deconvolved deconvolved imageimage                            Self-calibrated imageSelf-calibrated image

Self-Calibration

Sharpen the Sharpen the deconvolved deconvolved imageimage



Outline

• The relationship between sky brightness and visibility

• Sampling of the Fourier plane

• Fourier inversion
– Weighting schemes
– The problem with the dirty image - sidelobes

• Deconvolution
– CLEAN
– Maximum Entropy Method
– Algebraic deconvolution
– Other methods

• Some examples



Formal description

•• For small fields of view, the visibility function is the 2-DFor small fields of view, the visibility function is the 2-D
Fourier transform of the sky brightness:Fourier transform of the sky brightness:

•• We sample the Fourier plane at a discrete number of points:We sample the Fourier plane at a discrete number of points:

•• So the inverse transform is:So the inverse transform is:

•• Applying the Fourier convolution theorem:Applying the Fourier convolution theorem:

•• where B is the point spread function:where B is the point spread function:
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Convolution theorem

•• Inverse Fourier transform of the sampled visibilities yields theInverse Fourier transform of the sampled visibilities yields the
true sky convolved with the point spread function (PSF)true sky convolved with the point spread function (PSF)

•• Different ways to understand this effect:Different ways to understand this effect:
–– Incomplete Fourier sampling => missing information about theIncomplete Fourier sampling => missing information about the

sky brightnesssky brightness

–– Array Array ≡≡ masked aperture => diffraction patterns in image plane masked aperture => diffraction patterns in image plane

To find the true sky brightnessTo find the true sky brightness      , we must , we must ““deconvolvedeconvolve”” the point the point
spread functionspread function          from the dirty image     .from the dirty image     .

•• What are the properties of the point spread function?What are the properties of the point spread function?

–– ““sidelobessidelobes”” with infinite extent with infinite extent

–– Invisible distributionsInvisible distributions
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A digression: Fast Fourier Transforms

–– FFTs FFTs are much faster than simple Fourier summation but aare much faster than simple Fourier summation but a
regular regular gridding gridding is requiredis required

–– Visibility data are irregularly sampled so we must resample theVisibility data are irregularly sampled so we must resample the
data on a regular griddata on a regular grid

–– Convolutional gridding Convolutional gridding is used: the discrete visibility samples areis used: the discrete visibility samples are
notionally smoothed to a continuous function, and thennotionally smoothed to a continuous function, and then
resampled resampled at the regular grid points.at the regular grid points.

–– Time-consuming but generally worthwhileTime-consuming but generally worthwhile

–– Some fraction of the power is applied to the incorrect spatialSome fraction of the power is applied to the incorrect spatial
frequencies: frequencies: aliasing aliasing or or spurious sourcesspurious sources, usually at a very low, usually at a very low
levellevel

–– Long description in Long description in Synthesis Imaging IISynthesis Imaging II



Some Fourier transform pairs



Sidelobes

•• From the sampling pattern, we can find that:From the sampling pattern, we can find that:

•• So the point spread function is always a collection of co-So the point spread function is always a collection of co-
sinusoids that extendssinusoids that extends  throughout the image planethroughout the image plane

•• At the center,At the center,

•• The PSF has a width The PSF has a width                                       ,,

•• The RMS level is ~The RMS level is ~

••
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More on sidelobes

•• Far-out sidelobes:Far-out sidelobes:
From the Fourier derivative theorem, if the sampling pattern has aFrom the Fourier derivative theorem, if the sampling pattern has a
discontinuous first derivative, thediscontinuous first derivative, the  PSF drops off as the inverse of thePSF drops off as the inverse of the
radius in the image planeradius in the image plane

•• Close-in sidelobes:Close-in sidelobes:
Suppose that the sampling pattern is bounded by a circle, then theSuppose that the sampling pattern is bounded by a circle, then the
PSF close in must resemble the inverse Fourier transform of a circle:PSF close in must resemble the inverse Fourier transform of a circle:
first order Bessel function divided by radius: first order Bessel function divided by radius: Jinc Jinc functionfunction

•• Can apply weighting to ameliorate these two effects:Can apply weighting to ameliorate these two effects:
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Close-in sidelobes



Close-in sidelobes



Weighting

•• Choose the weighting function to alter properties of PSF:Choose the weighting function to alter properties of PSF:

•• Uniform weightingUniform weighting

–– To minimize RMS sidelobes over entire image requires:To minimize RMS sidelobes over entire image requires:

–– But SNR suffers...But SNR suffers...

•• Natural weightingNatural weighting

–– To minimize noise over entire image requires:To minimize noise over entire image requires:

•• Briggs (robust) weightingBriggs (robust) weighting

–– To minimize noise plus sidelobes for point source of strength     requiresTo minimize noise plus sidelobes for point source of strength     requires

••
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More on weighting

•• Super-uniform weightingSuper-uniform weighting

–– Can choose to minimize sidelobes over smaller region than entireCan choose to minimize sidelobes over smaller region than entire
imageimage

–– Divide out density averaged over large region in Fourier spaceDivide out density averaged over large region in Fourier space

•• All weighting decreases the sensitivity relative to naturalAll weighting decreases the sensitivity relative to natural
weightingweighting

•• Uniform weighting increases the resolution relative to naturalUniform weighting increases the resolution relative to natural
weightingweighting

•• BriggsBriggs’’ weighting allows a compromise between sensitivity weighting allows a compromise between sensitivity
and resolutionand resolution



An Example:
•• Observations of Hydra AObservations of Hydra A  with the VLA in B configurationwith the VLA in B configuration

(data courtesy of Greg Taylor (University of New Mexico)(data courtesy of Greg Taylor (University of New Mexico)

••                                             Location Of VLA AntennasLocation Of VLA Antennas
••

••                                                                                                                                                      N36 ( 2) N36 ( 2)

••                                                                                                                                                   N32 (27)  N32 (27)

••                                                                                                                                                   N28 ( 8)N28 ( 8)

••                                                                                                                                                  N24 ( 3) N24 ( 3)

••                                                                                                                                              N20 (15)   N20 (15)

••                                                                                                                                                N12 ( 6) N12 ( 6)

••                                                                                                                  N8  ( 5)                                N8  ( 5)                                                 VLA:OUT  (13), (20)VLA:OUT  (13), (20)

••                                                                        N4  (17)                                                                       N4  (17)

••                                                                                                                          (28) W4    (28) W4        E4  (18) E4  (18)

••                                                                                                              ( 9) W8       ( 9) W8                                  E8  (23)  E8  (23)

••                                                                                               ( 1) W12          ( 1) W12                                                         E12 (16) E12 (16)

••                                                                               (21) W16                     (21) W16                                                                           E16 (22)E16 (22)

••                                                                           (12) W20                 (12) W20                                                                                              E20 (26) E20 (26)

••                                                              ( 4) W24   ( 4) W24                                                                                                                                   E24 (24) E24 (24)

••                                                     (11) W28(11) W28                                                                                                                                                             E28 (14) E28 (14)

••                                           (19) W32 (19) W32                                                                                              E32 (25)                                                                                     E32 (25)

••                              (10) W36 (10) W36                                                                                                                                                                                                       E36 ( 7)     E36 ( 7)



uv-coverage



“Snapshot” image







Tapering

•• Can go further, and multiply by a desired sampling shape:Can go further, and multiply by a desired sampling shape:

•• For example, the desired shape could be a Gaussian, whichFor example, the desired shape could be a Gaussian, which
transforms to a Gaussian, and therefore falls away rapidly intransforms to a Gaussian, and therefore falls away rapidly in
the image planethe image plane

•• BUT, the underlying sampling pattern eventually wins...BUT, the underlying sampling pattern eventually wins...

Weighting and tapering help, but cannot entirely remedyWeighting and tapering help, but cannot entirely remedy
the limitations in the image due to finite Fourier planethe limitations in the image due to finite Fourier plane
samplingsampling
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Invisible distributions

•• There are sky brightness distributions     that are invisible:There are sky brightness distributions     that are invisible:

•• This occurs when the spatial frequencies          in the invisibleThis occurs when the spatial frequencies          in the invisible
distribution      are not sampleddistribution      are not sampled

•• Some examples:Some examples:

–– Total integrated brightness (usually but not always)Total integrated brightness (usually but not always)

–– Short Short spacings spacings below the below the minimumminimum separation of antennas separation of antennas

–– Long Long spacings spacings beyond the beyond the maximummaximum separation of antennas separation of antennas

–– Holes in the sampling patternHoles in the sampling pattern

–– Any combination of the above!Any combination of the above!

•• No No linearlinear method can ever recover the invisible distributions method can ever recover the invisible distributions
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How can we determine the invisible distributions?

•• Apply Apply a prioria priori knowledge about the sky brightness knowledge about the sky brightness

•• What do we know?What do we know?

–– Sky brightness is positive, sum of co-sinusoids is not necessarilySky brightness is positive, sum of co-sinusoids is not necessarily

–– Sky is mostly dark, sum of co-sinusoids is notSky is mostly dark, sum of co-sinusoids is not

–– Sky is collection of point sources, sum of co-sinusoids is notSky is collection of point sources, sum of co-sinusoids is not

–– Sky may be smooth, sum of co-sinusoids is probably notSky may be smooth, sum of co-sinusoids is probably not

•• Non-linearNon-linear deconvolution algorithms solve for an estimate of deconvolution algorithms solve for an estimate of
the true sky brightness   , from the convolution equation,the true sky brightness   , from the convolution equation,
while applying while applying a prioria priori constraints on the final solution constraints on the final solution

I



Popular deconvolution algorithms

•• CLEAN:CLEAN:
–– sky is composed of point sources on a dark skysky is composed of point sources on a dark sky

–– sky is composed of resolved sources of known extent on a darksky is composed of resolved sources of known extent on a dark
skysky

•• Multi-scale CLEAN:Multi-scale CLEAN:
–– sky is composed of smooth, limited extent blobs on a dark skysky is composed of smooth, limited extent blobs on a dark sky

•• Maximum Entropy Method:Maximum Entropy Method:
–– sky is smooth and positivesky is smooth and positive

•• Non-negative least squares:Non-negative least squares:
–– sky is non-negative and compactsky is non-negative and compact

•• Hybrid algorithms:Hybrid algorithms:
–– Some combination of the above...Some combination of the above...



Classic CLEAN

•• A prioriA priori constraint:  constraint: sky is composed of point sources on a dark skysky is composed of point sources on a dark sky

•• Uses iterative algorithm to find sequence of point sourcesUses iterative algorithm to find sequence of point sources

–– Find peak in imageFind peak in image

–– Subtract a PSF centered and scaled appropriately to remove the effectSubtract a PSF centered and scaled appropriately to remove the effect
of the brightness point, store component thus foundof the brightness point, store component thus found

–– If any significant points left, return to first stepIf any significant points left, return to first step

–– Convolve point components by Convolve point components by ““CleanClean”” point spread function point spread function
•• Same width as dirtySame width as dirty  PSF but no sidelobesPSF but no sidelobes

–– Add residuals image to obtain Add residuals image to obtain ““restoredrestored”” image image

•• Classic CLEAN algorithm due to Classic CLEAN algorithm due to Högbom Högbom (1974)(1974)



Classic CLEAN details

•• Usually stabilize algorithm by subtracting only a fraction (theUsually stabilize algorithm by subtracting only a fraction (the
loop gain ~ 0.1) of the strength of a point sourceloop gain ~ 0.1) of the strength of a point source

•• Usually stop either after finding a given number ofUsually stop either after finding a given number of
components or when the peak residual is reaches a threshold,components or when the peak residual is reaches a threshold,
such as a multiple of the intrinsic noise levelsuch as a multiple of the intrinsic noise level

•• Schwarz (1978) showed thatSchwarz (1978) showed that

–– Classic CLEAN must converge Classic CLEAN must converge i.e. i.e. the peak residual mustthe peak residual must
decreasedecrease

–– Classic CLEAN is equivalent to a least square fit of sinusoids toClassic CLEAN is equivalent to a least square fit of sinusoids to
the visibility datathe visibility data

•• Excellent at reducing identifying and correcting for pointExcellent at reducing identifying and correcting for point
sources, less effective for extended emission in neighboringsources, less effective for extended emission in neighboring
pixelspixels



Classic Window CLEAN

•• A prioriA priori constraint:  constraint: sky brightness extent is known a priorisky brightness extent is known a priori

•• Uses Classic CLEAN iterative algorithm to find sequence ofUses Classic CLEAN iterative algorithm to find sequence of
point sources in restricted region delimited by CLEAN boxespoint sources in restricted region delimited by CLEAN boxes

•• Allows close specification of source support constraintsAllows close specification of source support constraints

•• Very useful for poor Fourier plane coverage Very useful for poor Fourier plane coverage e.g.e.g. VLBI VLBI



CLEAN variants

•• Clark CLEAN: faster variant of Clark CLEAN: faster variant of Högbom Högbom CLEANCLEAN

–– Split into two stagesSplit into two stages

–– Cleans subset of brightness points in minor cycleCleans subset of brightness points in minor cycle

–– Subtracts sidelobes completely using Fast Fourier Transform convolution inSubtracts sidelobes completely using Fast Fourier Transform convolution in
major cyclemajor cycle

–– 0.1-10 times faster than 0.1-10 times faster than HögbomHögbom

•• Schwab-Cotton CLEAN: another variant of Clark CLEANSchwab-Cotton CLEAN: another variant of Clark CLEAN

–– Clark minor cycleClark minor cycle

–– Major cycle subtracts components directly from visibility dataMajor cycle subtracts components directly from visibility data

–– Sometimes faster, always more accurate than Clark CLEANSometimes faster, always more accurate than Clark CLEAN

–– Can clean multiple fieldsCan clean multiple fields

•• Steer-Dewdney-Ito: variant of Clark CLEANSteer-Dewdney-Ito: variant of Clark CLEAN

–– Minor cycle simply takes scaled version of pixels brighter than some trim levelMinor cycle simply takes scaled version of pixels brighter than some trim level



Schwab-Cotton CLEAN



Multi-scale CLEAN

•• A prioriA priori constraint:  constraint: sky is composed of smooth blobs on a darksky is composed of smooth blobs on a dark
backgroundbackground

•• Decompose sky into summation of blobs of various sizes Decompose sky into summation of blobs of various sizes e.g.e.g.
truncated parabolas of width 0, 3, 10, 30  pixels.truncated parabolas of width 0, 3, 10, 30  pixels.

•• Perform one CLEAN algorithm for each scale size in parallel,Perform one CLEAN algorithm for each scale size in parallel,
and choose blob that gives the greatest reduction in peakand choose blob that gives the greatest reduction in peak
residualresidual

•• Excellent at identifying large-scale coherent structureExcellent at identifying large-scale coherent structure

•• Residuals are quite noise-likeResiduals are quite noise-like



Multi-scale CLEAN

Clark Clean

Clark Residuals

MS Clean

MS Residuals



Multi-scale CLEAN

Convergence

on various

scale sizes.

Clean gain=0.5



Maximum Entropy Method

•• A prioriA priori constraint:  constraint: sky is smooth and positivesky is smooth and positive

•• Algorithm maximize a measure of smoothness (entropy) whileAlgorithm maximize a measure of smoothness (entropy) while
solving the convolution equationsolving the convolution equation

•• where      is a where      is a ““defaultdefault”” image which is the image obtained image which is the image obtained
with no data. Usually a flat default image is used.with no data. Usually a flat default image is used.

•• Non-linear optimization problem:Non-linear optimization problem:    Cornwell-Evans (1983)Cornwell-Evans (1983)

•• Excellent for large diffuse emissionExcellent for large diffuse emission

•• Default image is very powerful for incorporating prior imagesDefault image is very powerful for incorporating prior images

•• Extensible to multiple simultaneous convolution equationsExtensible to multiple simultaneous convolution equations  
(applicable to (applicable to mosaicingmosaicing))
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Maximum Entropy Method details

•• Fast and efficient for million or more pixelsFast and efficient for million or more pixels

•• Excellent on smooth extended emission with limited dynamicExcellent on smooth extended emission with limited dynamic
rangerange

•• Point sources cause problemsPoint sources cause problems

–– Should be removed using CLEAN before applying MEMShould be removed using CLEAN before applying MEM

•• Much has been written about philosophy and meaning of MEMMuch has been written about philosophy and meaning of MEM



Algebraic deconvolution

•• Pixellate Pixellate convolution equations and represent via linearconvolution equations and represent via linear
algebra              where the matrix     represents the pointalgebra              where the matrix     represents the point
spread function,     is the unknown image as a vector, andspread function,     is the unknown image as a vector, and
is the dirty image as a vector.is the dirty image as a vector.

•• This linear equation must be solved using various constraintsThis linear equation must be solved using various constraints

–– e.g.e.g. support constraints:  support constraints: we know that the emission is non-zerowe know that the emission is non-zero
for only some areasfor only some areas

•• Solve equation using Solve equation using e.g.e.g. Singular Value Decomposition Singular Value Decomposition

–– usually inadequate to get reasonable result but useful asusually inadequate to get reasonable result but useful as
indication of conditioning of the problemindication of conditioning of the problem

bxA = A

x b



Non-Negative Least Squares

•• Impose Impose non-negativitynon-negativity using any of a variety of solvers using any of a variety of solvers

          Solve                 subject toSolve                 subject to

•• Works well for high dynamic range images of moderatelyWorks well for high dynamic range images of moderately
resolved sources (Briggsresolved sources (Briggs’’ thesis, 1995) thesis, 1995)

bxA = 0!x



Example

•• VLBA simulated observations of M87-like jet sourceVLBA simulated observations of M87-like jet source

•• Will showWill show
–– uv uv coveragecoverage
–– Visibility functionVisibility function
–– Point Spread FunctionPoint Spread Function
–– Dirty imageDirty image
–– Clean imagesClean images
–– Maximum Entropy imagesMaximum Entropy images



Original and smoothed model



Fourier plane sampling



Point Spread Function



Original model and Dirty image



Classic CLEAN: 5000 and 20000 comps



Window CLEAN: 5000 and 20000 comps



MEM: failure of super-resolution



MEM: boxed, with point source removed



Original model and best image



Best Clean and Best MEM



Example

•• VLA multi-snapshot observation of Hydra A-like sourceVLA multi-snapshot observation of Hydra A-like source

•• Will showWill show
–– UV coverageUV coverage
–– Visibility functionVisibility function
–– Point Spread FunctionPoint Spread Function
–– Dirty imageDirty image
–– Clean imagesClean images
–– Maximum Entropy imagesMaximum Entropy images



uv-coverage, PSF, Dirty image,
CLEAN, MEM, Multi-scale CLEAN



Summary

•• Incomplete Fourier plane coverage leads to diffractionIncomplete Fourier plane coverage leads to diffraction
patterns in imagespatterns in images

•• Deconvolution algorithms can correct for these patternsDeconvolution algorithms can correct for these patterns

•• A number of complementary algorithms exist for imageA number of complementary algorithms exist for image
deconvolutiondeconvolution
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Poema Poema XIV.XIV.
Juegas todos los dJuegas todos los díass  con la con la luz luz del del universouniverso..
Sutil visitadoraSutil visitadora, , llegas llegas en la en la flor flor y en el y en el aguaagua..
Eres mEres másás que esta blanca cabecita que aprieto que esta blanca cabecita que aprieto
como como un un racimo entre mis manos cada dracimo entre mis manos cada día..

(de (de ““2020  poemas poemas de de amor amor y y una cancion una cancion 
desesperadadesesperada”” de Pablo  de Pablo NerudaNeruda))

Poem XIV.Poem XIV.
Every day you play with the light of the universe.Every day you play with the light of the universe.
Subtle visitor, you arrive in the flower and the water.Subtle visitor, you arrive in the flower and the water.
You are more that this white head that I hold tightlyYou are more that this white head that I hold tightly
as a cluster of fruit, every day, between my hands.as a cluster of fruit, every day, between my hands.

(from(from  ““20 love poems and a desperate song20 love poems and a desperate song””
  byby  Pablo Pablo NerudaNeruda))


